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ABSTRACT 

A technique is presented for the constructions of stress- 
strain relations based on experimental, cyclic, damping data. 
The extension of this technique to the biaxial stress case is 
then shown followed by an example application involving flexural 
vibrations of a cantilever. 
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I.  INTRODUCTION 

The purpose of this paper is to develop and demonstrate a 
simple mathematical formulation of one and two dimensional, damped 
stress-strain relations based on a special reduction of experi- 
mental data. The motivation for this work, which might be consid- 
ered as an intermediate approach, stems from the marked complexity 
and large number (at least a dozen) of separate physical phenomena 
which have been discovered as being integrant to material damp- 
ing. (1)* The implication is that a rigorous approach, which per- 
force must reflect such involvement, could only be speculative 
with the present limited experimental data. In spite of the 
physical complexity of material damping, however, certain system- 
atizations of the experimental data have been achieved, and it is 
for such a development that the present paper constructs a mathe- 
matical theory. 

The simplest mathematical formulation for energy dissipation 
which can be used to describe structural damping is that which 
corresponds to the linear dashpot. Its plot on stress-strain 
coordinates, for sinusoidal straining action, produces smooth 
contoured hysteresis loops as shown in Figure la. If this formu- 
lation is modified by dividing the damping coefficient by the 
frequency (implying restriction of attention to discrete fre- 
quencies), then this removes the linear frequency dependence of 
the energy dissipation per cycle. This is usually termed "hys- 
teretic damping," and is one of the most prominant characteristics 
of material damping. Thus for the uniaxial case, the stress- 
strain relation for hysteretic damping becomes 

_C_ 
cr = Ee + (1.x) 

where <j and « are respectively, the stress and strain, E is 
Young's modulus, C is the damping coefficient, o> is the fre- 
quency of the sinusoidal straining action and k is the strain 
rate. 

Although it turns out that the foregoing formulation, which 
produces elliptical hysteresis loops, can produce excellent re- 
sults in most vibration analysis problems, the experimentally 
obtained loops for metals have sharp corners at both ends, and 

♦Number in parentheses refer to a bibliography on page 
Manuscript released for publication 15 Au&u*C 1961 as a- 

ASD Technical Report. 

2d. 



furthermore, are practically linear in the central, or low stress- 
strain region. This suggests that the next stage of complexity 
in the analytical development might be an attempt at a direct, 
geometric description of the hysteresis loops incorporating the 
aforementioned characteristics. This has been done in various 
ways. A formulation, due to Davidenkov (2), which brings in the 
characteristic sharp corners as shown in Figure lb, and which 
also incorporates certain dependence upon strain amplitude, is 
represented by the following equations: 

—    f     H-   T,     .m   m-im-i-i 

f    H-    [, \tn        _m-1  m 1 \ 
(1-2) 

The two equations, one each for the upper and lower curves of the 
hysteresis loop, are now a necessary complication. The constants 

fj.     and m  are left, to be evaluated experimentally for the 
material under consideration, and e0     is the strain amplitude. 
This particular description of material damping has been applied 
to a number of problems by Pisarenko (3).  The associated mathe- 
matical problem, of course, is nonlinear, but his results show 
that a first approximation only, derived by the use of asymptotic 
expansions, gives a fairly accurate result. 

Another example of the foregoing technique of geometric 
description of hysteresis loops is that developed by Rang (4). 
In this case a cubic polynomial is used to describe each of the 
two sides of the loop, which produces sharp corners, with the 
constants being determined by assigning values to certain charac- 
teristic tangents of the loop and the locus of the corner points. 
Both of the foregoing formulations allow close approximation of 
experimentally observed physical phenomena, but at the expense of 
making subsequent mathematical analysis quite difficult.  For the 
Rang case, an example solution is given only for a discrete, one 
degree of freedom, spring-mass model. Furthermore, both of the 
foregoing analyses are developed strictly for the uniaxial stress 
case and no attempt appears to have been made at incorporating 
them, in any systematic way, with the biaxial stress case or with 
other phenomena such as hereditary effects, etc. All descriptions, 
however, can be modified to include various types of dependence 
on strain amplitude. 

Thus, at present, there is not only the penalty of mathemat- 
ical complication in employing relatively precise descriptions of 
the hysteresis loop, but the added disadvantage that no suitable 
collection of data is available for a wide variety of materials. 



In fact, the only general technique which has been shown up to 
now, for systematizing such data, uses the area of the hysteresis 
loop, plus certain fatigue properties, with no reference to loop 
shape.  In other words, it does not contain information with re- 
spect to instantaneous rates of energy dissipation, which would 
therefore have to be added in some way if the more precise de- 
scriptions were to be applied. Besides this problem of expanding 
the collected data, there occurs the still additional problem of 
interpreting equivalent damping conditions under uniaxial and 
biaxial stress conditions.  The precise phenomena involved in this 
connection are not fully understood at the present time.  The only 
relevant theory for associating data obtained using uniaxial 
stress to the biaxial stress case is that due to Robertson and 
Yorgiadis (5), who define equivalent states (of material damping) 
as those which produce the same distortion energy, and that due 
to Mentel (6), who suggests that in such cases as plate vibration, 
some fractional part of the dilatational strain energy ought to 
be included in the foregoing equivalence.  The latter formulation 
can be expressed analytically 

"n  =  7 3Tm + A*2 d" (1-3) 

where OL  is the maximum (normal) stress in the uniaxial case 
and Tm  and  Oj are the maximum shear and the "mean normal" or 
dilatational components of stress in the equivalent biaxial case, 
The development of this equation is worth special notice.  Con- 
sider the two states of stress as shown in Figure 2.  If we 
observe that the principal stresses in the biaxial stress state 
can be designated by 

a,    = a.   + T 
d    m 

2     dm 

then the expressions for the distortlonal and dilatational strain 
energies take on the following form: 

for the uniaxial stress state, 

I + v 2 
U =        a 

distortion 3E n 



I  -  ZV 2 U «     <r 
dilatation 6E 

for the biaxial  stress state, 

Udistortion     ="TiL(3Tn^+  °£ ] 

Udilatation 3E ^ 

Thus,   if we choose to ignore the mean normal  stress   <^j      ,   say 
by setting     o\   = 0,   and then equate the distortional strain 
energies in the two cases, we obtain 

I + v 2 1 + v z    <r     =    T 
3E        n Em 

or   (1-4) 

which is the Robertson-Yorgiadis criterion. On the other hand, 
if we retain all quantities and equate the total strain energies 
in the two cases, we find the equivalent expression to be 

% - v/2(l + ,)^+2(l-,)o-d
2        (1_5) 

If we now set v   »1/3, then (1-5) becomes 

a  = /-f-T2+^-cr2 (1-6) 



Alternatively. If regard the damping phenomenon as being associated 
primarily with a "plastic type1 straining process wherein v   - %, 
we obtain 

<r  = ./ 3T2 + <r2 
n   V   m   ( d (1-7) 

2 
The coefficient of  T

m  , as given by (1-6) and (1-7), is thus 
observed to be at most only moderately altered from its value in 
(1-4). Hence, in order to allow for a variable damping influence 
between distortional and dilatational straining, the form given 
by (1-3) is suggested as a simple, one parameter description for 
empirical reduction of experimental data. Although the uniaxial 
to biaxial damping equivalence given by (1-3) carries the impli- 
cation that the shear stress criterion, as expressed by (1-4), 
gives the lower bound for material damping, it should be observed 
that no argument is given to exclude negative values of A which 
means, for example, that a nullifying type of interaction could 
be described. Note that the first stress invariant I]_, for the 
biaxial case, is given by 

I, -  Z 0r|j   =2 <rd 

so that (1-3) can be rewritten 

r„ -V 3^ + ^AI,* (1-8) 

This reduction can be carried one step further by introducing 
the second stress invariant 

T 2        2 

which gives 

T 
m 

= — I2 - I 

so that (1-8) can be further modified to 

<rn = y-^-O+A)!,
2 - 3l2 (1.9) 



It is observed, however, that I2 introduces no new functional 
forms beyond those contained in £1-8), so that a simple, one 
parameter description, based on (1-8), is 

a       = J   3r2 + A* I,2 
(1-10) 

which is the expression used in this paper. A two parameter 
description, based on (1-9), would be 

crn = y A, If + AaI2 
(1-11) 

This latter formulation might be the most promising for the tri- 
axial stress case but this problem is left for future studies. 

In view of the foregoing unclear situation concerning mate- 
rial damping under biaxial stress, it was concluded that a useful 
interim step for theoretical response work, would be to construct 
a mathematical theory which was counterpart only to the degree of 
systematization thus far shown for experimental data. This implies 
neglect of loop shape, so that the simplest mathematical shape, 
viz., the ellipse, might as well be taken. The chief effect of 
this simplification, whose primary geometric characteristic is the 
elimination of the sharp corners at the loop tips, might be ex- 
pected to be significant only at the highest modes and frequencies 
of vibration.  No such effect, however, is demonstrated since the 
analysis is carried out only for vibrations in the neighborhood of 
the fundamental resonance.  In this case, when the loops corre- 
spond to structural metals at stress amplitudes below yield, the 
area only and not the loop shape appears to be significant [3] . 
Further discussion of this question is included in subsequent 
sections of this paper. 

The one parameter equivalence relation between uniaxial and 
biaxial stress states, as expressed by (1-10) and the experimental 
uniaxial damping data are then used as a basis for generating the 
stress strain relations for the biaxial case. These relations 
permit the formulation of the vibration response problem for 
plates exhibiting material damping. Example solutions for the case 
of a circular plate are given in [7]. 



II.  ANALYTICAL FORMULATION OF MATERIAL DAMPING 

2.1 General Problem 

It was observed In the foregoing section, that at least a 
dozen individual phenomena (e.g., magnetostriction, intercrystal 
thermal currents, interstitial solute atoms, etc.) have been 
identified as being significant in the production of material 
damping. Any widely applicable reduction of damping data can 
therefore be expected to be either extremely elaborate, which 
singles out the aforementioned phenomena and their associated 
parameters, or extremely simple, which suppresses them. At the 
present time, only the latter approach has led to significant 
success based on a broad assimilation of data.  This development 
has been due to Lazan who has shown, empirically, that the 
fatigue strength of material can be used as an important parameter 
in the reduction of experimental damping data (see Figure 2.10 
of Ref. (8)). This parameter is the ratio of the cyclic stress 
S0 (in mathematical notation, the stress amplitude aQ    ) to the 
fatigue strength SE, corresponding to 2 x 107 cycles, both quan- 
tities corresponding to uniaxial, sinusoidal, constant amplitude 
and fixed frequency conditions. The experimental results show, 
that for the given selection of structural materials, the energy 
dissipation is essentially independent of both the frequency of 
cycling and the stress history when the stress amplitude is kept 
below a certain critical value. This observation confirms the 
common notion of hysteretic damping, which serves adequately in 
many simplified analysis of vibration response. 

The aforementioned critical value of stress amplitude is 
called the cyclic stress sensitivity limit SL.  Both the fre- 
quency of cycling and stress history develop marked influence for 
cyclic stressing above this stress limit.  An empirical determi- 
nation of this critical value, due to Lazan (1), is 80 percent of 
the fatigue strength corresponding to 2 x 10' cycles.  Fortunately, 
from the analytical point of view, this value is relatively high 
compared to stress levels nominally encountered in structures 
subjected to long term dynamic loading. 

The conclusion derived from the foregoing sections is that 
at stress amplitudes below the cyclic stress sensitivity limit, 
the cyclic material damping is adequately expressed merely as a 
function of the strer ; amplitude S0.  Such a description has been 
found by Lazan (8) to be 

Do = JS0 (2.1-1) 



where J and a are adjusted for the given material, and D0 is the 
cyclic energy dissipation per unit volume. The range of values 
taken by the parameters J and of is relatively small (no changes 
of order of magnitude) for a large selection of structural mate- 
rials. The total cyclic energy dissipation Dm, in a given volume 
of material is then given by 

°* = /volume D°</V (2-1-2> 
For reasons which will be apparent later, the alternative expres- 
sion 

D° " n Tn S° (2.1-3) 

where n is restricted to being an integer, will be introduced as 
a replacement of (2.1-1). 

2.2 Uniaxial Stress 

We have already introduced the stress strain relations of 
Davidenkov as equations (1-2) in section 1.  If these equations 
are integrated over a complete cycle in order to obtain the net 
loop area, and hence the cyclic energy dissipation D<j> we find 
that 

D0 = J      o- Ö€   + J  cF de   = 
~€o 

We now note that 

€o ♦«<> m(m + l)  €° •<2'2-1> 

So s ".- E€o { I" — (2«0)    } . 

so that if we assume small strains (and small nonlinearity) in 
the sense that 

u ,    m-i 
-£-(2<o>     «I 

we can rewrite equation (2.2-1) in the form 

2m + ' (m-l) >i m*i 
D° "   m(m+l)Em   °   *       (2*2"2> 

8 



Equation (2.2-2) is now in the same form as the empirical expres- 
sion (2.1-1) and we obtain an identity if we choose 

m — of — I 

a(a-|)Ea ' 
and H- ■        2a  (Qf_2) 

J 

(2.2-3) 

The fact of being able to demonstrate the foregoing equivalence 
lends additional validity both to the experimentally derived 
equation (2.1-1) and the Davidenkov equations (1-2). However, 
the usefulness of the Davidenkov equations is limited by the 
complication of having to keep track of the proper branch of the 
hysteresis loop for different material points in addition to 
having mathematical nonlinearity.  Furthermore, the value of en 
in (2.1-1) lies between 2 and 3 for most structural metals with 
the value being nearer 2 for most steels (8 )( a     =2 for 1020 
steel,  0! =2.3 for Sandvik steel Q-T).  This corresponds to 
m = 1 in (1-2), for which value these equations collapse to 

o- = E ( I - ft   ) e 

which describes simply the undamped elastic case.  Thus, for 
integral values of of , equations (1-2) are useful only for the 
extreme case of a = 3 if material damping is to be included. 

The approach to the development of damped stress-strain rela- 
tions proposed in this paper, is to use strain rate as the 
device to introduce elliptical hysteresis loops (in the manner of 
complex damping [9, 10] ).  The advantage of this approach is that 
it allows direct and simple usage of the full hysteresis loop. 
The stress-strain relation can thus be written in the form 

*-E<« + c,«p + c,i  )       (22.4) 

where Ci and ß   account for elastic nonlinearity and C2 accounts 
for the damping. The available experimental data, however, deals 
primarily with structural metals, where, in the range of stress 
levels at which (2.1-1) is applicable, the elastic component is 
strictly linear. Hence, in place of (2.2-4), we are able to use 
the simpler relation 

o- - E( « + Ci ) (2.2-5) 



where the damping coefficient C is expected to be a function of 
the strain amplitude, frequency and the elastic constants. 

Integrating (2.2-5) for the cyclic damping, we obtain 

D„=ECJ    e de . to  i f>\ 
o      •'Cycle (2.2-6) 

If the straining action is now assumed to have the sinusoidal 
variation 

€ = €0 cos wst       ( *o > o ) 

the stress strain relation gives 

cr =   E €0 ( cos oJs t   -   C cüg sin cüg t  )   , 

so  that 

S0=   Ee0 ( I  +  C24)2 (2.2-7) 

the energy dissipation,   as expressed by (2.2-6),   then becomes 
27T 

D0  =   E C / "s    e 2 d\  =  TT E C ü>e e2 
0 •'o s   ° (2.2-8) 

substitution of  (2.2-7)   into  (2.2-1)  gives 

D0   -   JE   €0  ( I + C   ws ) (2.2-9) 

which can be compared with (2.2-8). Requiring the equivalence of 
(2.2-8) with (2.2-9) thus gives 

rrCu,s = JE
0"' c?"8 ( I + C* «J ) ■  .      (2.2-10) 

Equation (2.2-10) identifies the functional dependence required of 
the damping parameter C • This expression can be simplified if 
we observe that, for most structural applications, we can expect 
C w2. < < I  . The resulting expression for C is 
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C =   E   €„ 
^s      ° (2.2-11) 

Recalling that for structural metals a  usually has some non- 
integral value between 2 and 3, the alternative expression (2.1-3) 
can be employed to retain the simplicity of being able to stay 
with integers.  In particular, we can take 

D„ = T„ S? + JA  S* 0    2  °    4 ° (2.2-12) 

which provides an excellent approximation of (2.1-1) for any a 
in the aforementioned range.  The reason for stepping up to the 
fourth power in (2.2-12) is to obviate any necessity of having 
to keep track of the sign of S0 in subsequent applications. 
The corresponding expression for the damping coefficient C  is 

E 2 -r- 2 
c = -^r < J* + E* J4 

€ 
7TWS     2 4  0 (2.2-13) 

2  2 where again the condition C u> < < I has been applied.  Note that, 
for the case of of  = 2 in the prior formulation (2.2-11), we 
obtain 

C =  7TO)s  
J2 (2.2-14) 

which is the first term of (2.2-13). 

We thus conclude, that for the one dimensional case, a modi- 
fied stress strain relation based on an elliptical hysteresis 
loop, can be readily constructed such that the resulting energy 
dissipation is the same as that given by the empirical relation 
(2.1-1), or its substitute, (2.2-12).  This construction is con- 
siderably simplified by the restriction C2 wf << I , which, in 
physical terms, is equivalent to saying that the stress amplitude 
is determined substantially by the elastic component (of strain) 
only. 

2.3 Biaxial Stress 

The method of extending the stress-strain relation (2.2-5) 
to the biaxial case is not obvious. The reasons behind this were 
noted in the introduction. The most general uniaxial to biaxial 
stress state equivalence presently anticipated, as expressed by 
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(1-3), is therefore chosen for analysis. Using (1-3) and (2.1-1), 
the cyclic damping for biaxial stress becomes 

D.-J<Sr« ♦*!,■)* (,3.!, 

while using (1-3) and (2.2-11), we obtain 

D.-Ix.CSr'+A*!,')*       (2_3.2) 

The criterion that the stress amplitudes remain sufficiently 
small so that no effects of frequency or stress history might 
enter is now interpreted as 

T + a       <  SL 
(2.3-3) 

Either of the formulations (2.3-1) or (2.3-2) enable us to 
generalize the stress-strain relation (2.2-5) to the biaxial 
stress case.  Suppose we have a plane stress problem.  Consider 
the following construction for the stress-strain relations 
written in principal coordinates 

CTy -T^Uy + "»,+ E*Uy+"*<ix)- (2.3-4) 
The motivation behind the construction is clear:  the first terms 
of (2.3-4) are the usual relations of elasticity theory, and the 
second terms are modeled on the first, with constants E* and v * 
providing the analogous extension of constant C in (2.2-5). 
Again, by introducing a harmonic straining action described by 

€X = eox cos wgt  , 

€y = €oy coswst 

12 

(2.3-5) 



we can integrate (2.3-4) for the cyclic energy dissipation. The 
result is 

- 7rE*ws ( «Jx   + 2"*€ox«oy   + «cy  > oy      -cy       (2.3-6) 

which expresses the energy dissipation in terms of the ampli- 
tudes of the principal  strains. 

We proceed next to construct the alternative expression for 
D0     by solving for the equivalent normal  (or uniaxial)   stress 

and substituting this into the empirically based expression 
(2.3-1).    Thus the stress-strain relations may be written 

°"x  =   |_y2   (gox +1/€oy >coswst  + E*cosUox + v* *oy   )sincost, 

<ry = -J^T ( *oy + * <ox ) coso,st    + E* *s ( eoy + v± ^  ) sinu,s t  . 

By subtracting and adding the two  foregoing equations, we obtain 

°x   _CTy  =7T7Uox"€oy )c0S<V  + E* "s ( ' " v*)(6ox _ eoy } sin "s f , 

ax + °"y  * 7=7 ( €ox+ <oy } C08V + E* ws (' + "*,( eox+ % > sin<V . 

from which we can identify the maximum shear stress and dilata- 
tional components to be 

i,*-      {(Tr7),+<ES'," + ^', }<«.«+V • 

13 



Substituting these results into (2.3-1) finally gives 

■>. " T (I[(irr)'* ( E*".'2 ('" "*»,J <«ox-«o» >' 
a 

+ A*[(7^r) ^EV"^)']<V«O»I'}
!
. (23.7) 

The prior expression, given by (2.3-6) is now compared with 
(2.3-7), from which we obtain the condition that 

= 7T E*üJS( €QX + 2 u* eox eoy + e* ) . 
(2.3-8) 

A difficulty which now arises is that the foregoing expres- 
sion (2.3-8) is the only condition which emerges from this develop- 
ment, whereas there are now two, as yet unspecified damping 
parameters E* and  v  *, in addition to the special parameter 

A *.  Equation (2.3-8) therefore merely provides a constraint 
between the three quantities E*,   v * and  A *.  In spite 
of this indeterminacy, several useful, specific formulations are 
possible provided we accept certain restrictive assumptions. 

Let us consider the special case where  a = 2. Equation 
(2.3-8) is then satisfied if we choose 

TT ****{*[{■& 1+<EH>W]+T [(ifr f+( E V"-*'2]}. 

IT EV* = J{A*[(^7)2+<EV<'+**'21-T [(TM^+(EV(|-■'*,^]}, 

If we now apply the restriction that 

) 

<<    I (2.3-9) 
E*ws( l + v)(l-v*) 
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and E*aAl-v)U + v*) 

 —i  "' 
the foregoing equations simplify to the following: 

E* = 

v*. 

JE   f       A       +        3        ) 
*■   (l-i/)2       4(l+i/)2  J   » fw   L   (l-^Z       4(1+*)'  - (2.3-10) 

4A*(l+v)2- 3 (I-i/)2 

4A*(l+i/f+ 3(l-v)! 

It is tempting, at this stage, to investigate the condition 
v   = v *, which is strongly suggested by the way in which the ori- 
ginal equations (2.3-4) were formulated. This condition gives 

E * 3JE2 

27TCÜ (\ + v)(\-v2) (2.3-11) 

A* m       3(l-i/) 
4 (l+v ) 

where the expression for A * is particularly interesting if we 
recall equations (1-7) and (1-10). This indicated value of A * 
is 1/4 for the limiting case of Poisson's ratio of 1/2, which 
checks with the aforementioned equations, in particular, with the 
conditions set down for (1-7). On the other hand, for Poisson's 
ratio equal to 1/4, the indicated value of A * is 3/8, which, 
although an interesting result, must be treated as merely the con- 
sequence of an expedient postulate. 

An interesting result may also be obtained for the more 
general case where 2 < a < 3, which includes the entire range of 
experimental values applicable to structural metals at low stress 
levels.  In this case, in order to avoid dealing with fractional 
values of a.   , we turn to the expression given by (2.2-12). This 
two-term approximation gives 

where 

D„ = J2Q + J-.Q (2.3-12) 

° = {f [(7Tr)2+lE*"s>a<'-'*>2K,<-«oy>2 
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Equating (2.3-6) with (2.3-12), and applying the restrictions 
given by (2.3-9), we obtain 

^E*ws{€ox +2"*«oX <oy 
+ <oy > 

(2.3-13) 

Equation  (2.3-13)   is  satisfied,   if,   in particular, we choose 

e*--E , { tf + tf < «Ox   + 2"*<ox«oy   +'oy  '}. 7TU) 

v*m    4A*(l+y)2- 3(!-y)2 

iMil.,  ]2x    -all \2 4A"'(l + i/)z+  3(l-v)2 (2.3-14) 

where 

J*"EJ- ^TT^)r+ 4(i+,)2 } 2       ^"2   l   (I-*)« 4(1+*)' 

* 

^■".{-^} 

Once again,   if we  look at the  special case where   v  = v *, we 
find 

2 -. T .-* 
F* ^  E / X      + 204 t /     2     , 2      \ 

i8(l-*)(l + *)8     I "2        2(|-»/)(|+„)2 

.* 3(|-y) 

4(1+*)     ' 
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It should be noted that the strain amplitudes «ox and <oy 
are not necessarily positive quantities, although the sign of one 
determines the sign of the other on account of (2.3-5). However, 
(2.3-6), which gives the dissipation, is quadratic in the strains, 
so that the sign is unimportant in this case. 

III. VIBRATING BEAM EXAMPLE 

3.1 General Considerations 

We consider the specific problem of a cantilever beam of con- 
stant cross section which is excited in its fundamental flexural 
mode by a forced periodic rotation of its support. This problem 
has already been studied by Pisarenko who used Davidenkov's equa- 
tions (1-2) to describe the beam material. An additional study of 
this same problem, but using the stress-strain relations proposed 
herein, is thus provided with an interesting comparison. For exam- 
ple, it can be argued that the stress-strain relations developed 
in the foregoing section have such complication that one might as 
well drop any pretense of approximate formulations and work from 
a much more general development.  It is one of the objectives of 
this section to throw more light on this question. 

Pisarenko's analysis, which appears in Chapter Two of [2] , 
uses asymptotic expansions to generate successively higher ordered 
approximations of the solution to the steady state problem.  He 
finds, however, that only the first order approximation is neces- 
sary to produce acceptable accuracy.  It is assumed that the same 
situation holds true when the new stress-strain relations are used 
in place of Davidenkov's. A comparison of results is then possible 
using first order approximations only. 

3.2 Equations of Motion 

The basic geometry and coordinate system for describing the 
vibrating, deformed beam is shown in Figure 3, with the following 
notation: 

x = horizontal coordinate axis coinciding with the 
undeformed, unrotated centerline of the beam 

y = total deflection of the centerline from the x-axis 
due to rotation and deformation 

8  = small angle of rotation of the clamped end of the 
beam 

y = y - B  x, the deflection of the centerline due to 
deformation from the rigidly rotated position. 
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This description is based on the concept of the elastic line whose 
properties are derived for a rectangular cross section of width b 
and height h as shown in Figure 4. 

The appropriate stress-strain relation, as developed in 
Section 2, would be based on equations (2.2-4), (2.2-12) and 
(2.2-13) which give 

= E{€+^7(J2 
+ E2^eo,i} ™s (3.2-1) 

However, it is instructive to base the stress-strain relation more 
directly on the Davidenkov description.  Thus if we determine the 
constants in (2.2-12) by using (2.2-3) where we arbitrarily choose 
m = 2, the corresponding stress-strain relation becomes 

1    37rws    J (3.2-2) 

Using the expression for infinitesimal strains (Figure 3) 

€  =  z 
d2 

1. 
A    2        ' o: x 

(3.2-1) and (3.2-2)  become respectively 

a2 

and 

ä = Ez 

ox s OTCx        (3.2-3) 

1   dx2 37^    o   dtdx2     J- s <" "* (3.2-4) 

The bending moments,  M and M for  the  two cases,  at any cross  sec- 
tion are  then given by 

M   „r.. Ej2  a i a2
y    2bj4E

4  /-T  2   a3
y     2 

2       „ b 

dx2        ™s  
J°    €°   atdxz (3.2-6) 

-               a y          8/i.b    /•!           ay _   , 
M =EI —— + -^—  \      €n  *— z2dz 

Avi 7TUJ       Ja 0      o.   :»    2 

On neglecting the effects of shear deformation and rotatory inertia, 
the equations of motion are 
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y - y + 9* , 

P    at2+7^ = 0' (3.2-7) 
Substituting (3.2-5)  and (3.2-6)   into  (3.2-7)  gives respectively 

1  at2 3x2 J l        »»s   it J   3x* 

,  gbT.E«   a*   ,4 2_£^_ 
™s        aX

2 •'o       o   dtdx2 (3.2-8) 

ju8£LWE1Ji.+ 
,2 ^2     J Ci      •>    4 

a 
at      ax ax 

8/xb    az   /--f      a _ r 2       a ; 
™    ax

2 ^o  e° atax
z ' (3.2-9) 

f 2       ° y      2 . 

as the general equations of motion for the elastic line. The cor- 
responding boundary conditions are 

y  =   =0     at  x = 0 , 
a x 

a2v      a3 
y 

= 0     at  x = I 
ax

2       ax3 ' (3.2-10) 

The analyses of (3.2-8) and (3.2-9) are essentially parallel to each 
other:  the former (3.2-8) is the one suggested for general appli- 
cation, while the latter (3.2-9) is for the specific purpose of mak- 
ing a comparison with Pisarenko's solution. The subsequent analy- 
sis is therefore restricted to (3.2-9) only. 

We reformulate (3.2-9) and (3.2-10) by introducing the dimen- 
sionless quantities x = l£   , z = h i)     , and y =Xlu , where X  is 
an arbitrary, small parameter.  Furthermore, on assuming that the 
damping effect and the excitation, characterized in this case by 
the change in the angle B    , are both small, we denote 

6   = X 8Q  cos wt , 

€0(x,y) = X «J(£,u). 
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The equation of motion then becomes 

d4u           8/xbh3      d2    fi   *_JjL_    »w      . 
E I 7 + A —■ r*  /     €Ä  — 77   a 7) + 

4   d u 

at2 + p\*^rr = x v4e0 c coswt , 
.(3.2-11) 

with the boundary conditions 

du 
u = ^— = 0      at  C = 0, 

a u       a u 
~W = ~d? = °        •♦ c - 1. (3-2.12) 

3.3 Method of Solution and Zeroth Approximation 

The method of solution to be applied to the foregoing equa- 
tions is similar to that proposed by Pisarenko. We assume that the 
excitation frequency  OJ  , is in the neighborhood of one of the 
linear natural frequencies; say the fundamental natural frequency 

CJ  . and introduce the dimensionless time 
0 

T    «     Wt    +    if/    , 

where        r//      is an arbitrary constant.    Using  the new variable   T   , 
( 3.2- 11)  can be rewritten 

i_u_\z _£u_       E i     a4u / u> >* a2   f± * a3
u    2 

,2 

=   XÖ0(-^-)   Ccos(r- ^).       (3.3-1) 
.3 °  *    W0 

where      v   = 7 TTf I4 

We now assume a solution in the form of the expansions 

u =  u0 +  X u,   +  

u>2=cu2 ( I + U0I + ) 
(3.3-2) 

6  =60 (l + X0o,+ )  , 
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where 

u = 8 <p(£) cos T . (3.3-3) 

On substituting (3.3-2) into (3.3-1), we obtain the following 
set of linear differential equations: 

^-^^T-^ = eoCcos.T-+,-.0,^   (3.3-5) 

etc., where  o> = ws .  The corresponding boundary conditions are 

Uj   =   L =0 Ot   5 = 0, 

d2ui   a'Ui =0       at C - I • 
d£2 "  ac3 <3-3"6> 

On substituting (3.3-3) into (3.3-4) and considering the 
boundary conditions (3.3-6), a set of eigenfunctions 

<f>. = -r—:—; r—;—i ( cos k; + cosh k: )( cosh k-.C — cos k,C ) + 
M        2 sin ki sinh k:   *■ > J J s J^ lJ 

+ ( sin k: - sinh k-. )( sinh kX — sin kX )\ 
i i J      J  J(3.3-7) 

is generated; and the corresponding engenvalues k, are determined 
by j 

cos ks cosh k; + l = 0 

i4 2 

4   P * ""j 
where    k| = —  ' 

Hence, the zeroth approximation is 

(3.3-8) 

2    KQEI 
wo =  \« (3.3-9) 

M4 
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*«» -♦.«0 (3.3-10) 
3.4    First Order Approximation 

Recalling that _• 
h 0 u 

we have Xh8 
« (V " —J— *? 90 cos T 

hS „ (3.4-1) 
€o (uo} " ~ * $o       for    v > ° 

If (3.3-10)   and (3.4-1)   is now placed in  (3.3-5), we obtain 

d u, I      d   u a- + 
dr< k!    0^ 

7  11" =  ö„ C  COS ( T - ^ )  + 4       ji.4 0   3 * 

0 

.2 

+ a« , 8 <t>   cos T  + ———— ( kn <t>  <b" +  6'" " ) sin r 
-  ^o        32 1    °^o   *o        (3>4.2) 

which is the differential equation for the first approximation. 
The corresponding response equation is obtained by multiplying 
(3.4-2) by <L  COST  and (p sin r  separately, and integrating each 
result over the length of Vne beam for one cycle. This eliminates 
the time dependence and, of course, the energies must balance over 
the cycle. We thus obtain 

f (fttsin* + -^2- ( k.4<p <p" + 4>mZ )}<fi dC,=0 Jo    L °b       32 1   ° ro ro  ro   J ro b  (3.4-3) 

Carrying out the integrations and substituting for  u>0,  from 
(3.3-2), finally leads to the response equation for the first order 
approximation. 

2      „ .   T> -2       .— /   u  \z A    f r   4 0otcosko + cosh kQ)   1     [   yhilfi4\2 
^'""TU      k« sin k, ,inh k0 J"L-^rJ8 I    (3.4-4) 
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where -,    f 2 . 

The first order approximation of the solution for the displace- 
ment is now readily constructed by using the method of Fourier ex- 
pansion.    We thus assume the solution 

u,  ( T , C )  - </>, (£) COS T + t/r* (£) sin r (3.4-5) 

which,  on subsitution into  (3.4-2),  gives 

C-^ = ko  {*oCcos* + 8«-ol*o} 

♦T"-k.4^- k0
4 {ö0C sin* + ^\k;^- + *"■■>} 

(3.4-6) 

00 
** =    X   o*<p. 

On expanding 

oo 
*;  -    I    a. £ 

'       j=l    J    J 

we find 

n.   — 4 k0 90 cos *     /• • 
°j k4 -  k4       ^° 

„* 4k°    r1 fr a. — 
J »,*-*: J. l£ 

j = l J (3.4-7) 

*k4      r' r« ynS 2i 

«^f /.   i8«Csin * +   321  ' "• *. *  + t"  >M "*• 
3.5    Numerical Result and Comparison 

The result obtained in the foregoing section is now applied to 
the specific example studied by Pisarenko.    The beam is made of 
steel with the  following given data:    m = 2,7  u=  18.6,  b = 1.12 in. 
h = 0.59 in.,      I  = 15.95 in., E = 2.96 x 10' psi.,  and \z60 «I0~4 

The plot of the response curve given by  (3.4-5)  is shown in 
Figure 5;  also shown in the same figure are the corresponding solu- 
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tions up to Che first and second order approximations by Pisarenko. 
Obviously his second approximation blows up at the peak point of 
the response curve where \j/ = 77V 2   • This singularity can also 
be noticed by studying equations   12.4     and   12.5     of 

[3]  , which indicate that 12.4   cannot be satisfied at V^T/E 
However, this singularity can be removed if we modify Pisarenko1s 
method by expanding the amplitude of the excitation instead of 
the phase shift. This modification leaves the zeroth and the 
first approximations unchanged. Therefore, although the second ap- 
proximation (by Pisarenko) blows up at one point it does not imply 
the invalidity of the first approximation. Also, the result far 
away from the singularity, which falls closely on that given by 
(3.4-4) might still be used. 

Another reason for the difference in amplitude and shape of 
the response curves between the two cases is the strain hardening 
effect of the Davidenkov stress-strain relation. This is easily 
seen by plotting the locus of the tips of the hysteresis loops as 
shown in Figure 6.  The cyclic stress sensitivity limits (ST) for 
some typical structural metals are also indicated in the figure, 
beyond which values both formulations are invalid because of stress 
history effects. All of these points are noted to be below the 
corresponding yield limits, which justifies the linear formulation 
of the elastic component in (2.2-5); otherwise, as stated in 
Section 2, the typical cubic or some other term would have to be 
included. 

If the difference in the response (Figure 5) between the two 
cases is mainly due to the method of solution and magnitude of non- 
linear elastic components, then the use of the elliptical hysteresis 
loop should yield a satisfactory result. At least, the result 
should be as good as that given by Pisarenko's solution.  This con- 
jecture is enchanced by plotting the two corresponding hysteresis 
loops, given by (1-2) and (3.2-2) respectively, as shown in Figure 
7. The strain amplitude is taken at a value slightly below the 
cyclic stress sensitivity limit of high strength steel.  Neverthe- 
less the geometric appearance of the two loops appears to be prac- 
tically the same, except for the strain hardening effect. 

IV. CONCLUSIONS 

The analytical technique of describing material damping by el- 
liptical hysteresis loops has been applied to experimental damping 
data to produce damped, stress-strain relations. The objective of 
this approach is to produce an easily tractable mathematical descrip- 
tion of the stress-strain relation which at the same time adheres 
closely to experimentally observed behavior. An extension of this 
development to the biaxial stress case is also demonstrated, although 
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certain special assumptions concerning the role of distortional 
and dilatational strain energies are necessary in order to achieve 
this. An example application to the flexural vibration of a 
cantilever beam is shown to illustrate the aforementioned prop- 
erties. 
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(a) (b) 

FIG. 1.   HYSTERESIS LOOP SHAPES 

UNIAXIAL STATE BIAXIAL S1A1E 

(Principal Axis in 

Isotropie Medium) 

PIG. 2.   COMPARISON OP STRESS S1AIES 
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FIG. 3.  BEAM MODEL 

b 
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FIG. 4.   BEAM CROSS SECTIONS 
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TYPICAL YIELD STRESSES 

Sandvik steel (Q-T) 

1020 Steel 

Sandvik Steel (N) 

24 S - 1 4 Aluminum 

DAVIDENKOV VARIATION 

LINEAR VARIATION 

(Present Theory) 
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FIG. 6.  COMPARISON OF LOCUS CURVES 
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PRESENT DESCRIPTION 

  DAVIDENKOV DESCRIPTION T 
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PIG. 7.   COMPARISON OF HYSTERESIS LOOP SHAPES 
31 



(U  _  _  * 

t/1                   tO     ,                   t-l c 
•rH                         W     LI                          lH O            60 
■-H z         2                 o i      -H     -a C 
C O tO       3   .' u              O. Oi       to       o> TH 
O-l—1 Z       H   ■"   U              01 01  In        CHj> 
ilHOIU    ■«             Vi x:         aj to o i-i 
0) < >-H H 3      •■"!     "-~ U   C     »U'rfH   O 
C r-1 H M a!    « 0   .   rX) -U 

Ul 03  CO   (1)  to   o  C C3<3r-i3iH'Ma» 
•H S iJ       to lu Cu  o CO -H O   ^1  4J        •HIH'H 

-CM       < 55 (_>      £ —■> «1 

u-i 4-1 c oi x 
tfl (1) X!       c c 

T3   l    g H  0)   3   O 
<      z a M        •--    3« 0)  to T-I       X   O *H 
HJH       H    • »n   -"1 

to o as < 2     •H'I'— u 

U tO 1^       u X 4-1 
C   (0;   0)    •        tfl   CO 
01 lH  n. CO o        cj 

Z H tO Z i-i  C              13 
MU   X   UU    C -H 
0)   CO    0)    CO           01 r-H 

z > i w > to   "-^ VJ              T3   01 X   C 
H^WE                 M >-H   u 
Z < CO w o I-H  u CN   5 

a-1« c     3 4-i a, 
O   O   60 O"       CO 

tu < 2 W         4-1 -rl d    • 
to            c ■!-• to 

•rH   CO T3 *r4   C *<H   *u 
O      H Oi to C      r>» 1 C  OJ   0.x;       i-t 

i/ixza   •     -^ O   O  to   6   u   01   Q. 
6-     •       til O 2   C.Ü 
H to Q       i—<      .-H to 

3 'H co to o> to P 
C7 i-i X> "0 >-> to  fij 

I-H u il Z H    ■« « '■ •H   tj                        OX 
w ofeO<h)     H  : C  3  to    - to        QJ 
DS   «1 S       O X U  C  U --I to 
U   ü<QW    •    •  • - -i 
>   CQWI-1HMI-IC 

u u o -H x: to c 
0   tfi -rl H   U   01   CO 

Mc     to O-i     o m 3 4-1   C   4-1   CJ          t-l 
z T-i tu < a< >,a>n- 0   CO   >,tH 4J   >, 
SSOa3<iH r-^— <  Ü i-H   u  o  to Xl 

to               to   ^               4J C 
•rH                       U    D                       1-1 O              M 
i-H Z                 2     :":                          O 1            -r4           T3    C 
O O to       3   J 4-1              CX. 0)         to         4) TH 

aw z     H £ o         <u 0)  VJ        C M   3   > 
«HOIU    ■  0)             l-i x:         m to o i-H 
tu < i-4 H 3      -i-i     -^ 4-1   C      -U'HH   O 
c pj H i-i oi   - o , co-a •r(HXI<iH> 

l-l  CO   CO   0)   CO  O   c 
•H £ ,_3    w tu a. o co -H 

O 2 H O    •      o-   1 ---I 

O   1H   4J        -iH t+H -iH 
MH 4J c a) x 

to tux     e c 
-tu       < Z U      S '^ to 

<     Z D w        •      O to 
■O   i   E H 1) 3 O 
0j to TH      X  O *IH 

HJH         c-J-tOQHC0 
O < < J < U  60 j ' 0 i-H 
to u 2 <. 2    •iH'i'— o 

4j to u      u x; t-i 
C at oi • to to 
tu in a to o      o 

WMHHpa-D4-i^r»1 c Ul   U    X   4-1   4J    C -rl 
z H to z w e       ^3 0)   to   0)   CO          01 i-H 
Z >-   i W> CO    -/^. 
HJt/lS               I-HI-H JH 
2<WHOH OCM-5 

in         xi oi x: P. 
cw c      3ua 

O   0  60 C       IS 
ZW«H«Cm 

tu < 2 W         4J f-l fl    • 
tn          c -I-I to 

•H   IB t) i4   C 'H   41 
O      H Onto C      r^ O C   01   CX:         rH 

W X Z  4)    •      -5 

f-i CO Q       H      i-H Ul M 

41  0  01   E   O   4)   P. 
3 TH CO to 41 to g 
tJ"4J X T3   4-1   CO   CO 

MUWZH   «cncOJ •H   U                        U   X 
to oa.O<^      H JJ fi 3 io   -in      4i 
OS w S     o XI   lH   C    CJ -rH    01 
U 01 < Q M    •    • •"> 
5 CDUJHHH5 

O 4J  0 "H £   to  C 
01   tO TH rH   U    01   <0 

MC      to PH      voino 
Z -H tu < On  S^c* COO 
S Z O CO < Xi M r~—- 

UCU   Ü          lH 
O  «   t^1«  4-1  >> 

<   UrH   O   0   01X 

4r- -  ±  - ■ + 



fr - — ^_ -& 

t'i 

<r 

w               w  ^ U c . 
■i-i                 w tJ O              60         •    , H 
HZ        2 ;■: o i   -H   -o c    : 01 
OOUl      3   'u O. Qj             Hl             Q> TH                        ' > 
at-i z    H • o Ol 01 !H       C i-i 3  >        i' 0) 
I4HOIU    ■ 0> u ä         n n OH I-I 
(1) < w H D      •<-!     -— u c   »üTIH o ■ H 
CJHHJC    » o  .  co-o •H rH   X   X r-l   > 

U to co o) et) o C 
4-1 

C P < 3 H 3 IH  H   ü o c 
•H £ »J        W tu OH  O CO 
S 2 w <        w J 'O 

«tu       < ZU       S^ 
<       Z O M          -^   O 

• H O   V*   4-1        TIIHH 8 
4-1 i4-l u  C  0) XI o 
• H ui oi x:     cc 
01 T3   1   E H 0) 3  O co 
Cfl oi HI TH     X: o *H 

H J M       H    '»Q   H 
O < < r-l < U 6033  ° 
W U 2 <C 2      .H"-( — 

0) 4-1    H)   iH           U£U U-4 

U 
c oi oi   •      tfi n 
u i4 an) o      u 

o 

WHHHBTJ »H  " <-*l c Hl  4-1   X  4-1  4-1   C -H Hl 
ZHMZHC             ^13 QJ   Hl   0)   CQ          0) i—1 c 
Z >•   1  W >  CO    '>""^ 1J         -a o> x &■ 0 
H J VJ JE             iH f* Eu 
Z<WHOH UCN ^ 

&,<4-i    c           3   4-1    C. •H 
o o co er     <i U 

ZUOiH oi cm 
tu < 2 U3      u -H m   • 

Hl                 C -H   Hl ta 
■H   Hl T3 -H   C 'r-l   0) u 

O      H OH c/J c      r» 0 C   0)   O.Ä       I-I xi 
c/1 X Z oi    •     -i O   0  Hl  p   U  Oi  ex •H 

JM   •     W o S a^ 
H SO       M       iH  Hl .-' 

3 -H   t0   «   0)   Hl   g > 
o*4j ^3 "U 4J a <o 

MUWZH    • P1 CO 'J ■Hü                        CJ   X r—1 
f)  OfeO<h      HS C 3 Hl    - ui       ni CO 
Oi   Hl g         O x: u c u -H HI V-i 
U«<DH     •     •   --^ 
> COUJhHri: 

u u o H j: » c 3 
01    Hl   "r-l   ,—1    4J     0»    Hl X 

MC        C/5 OH       Om: UCUH           )H OI 
Z-r-l Ct, < a,   >,0 CTJ O   <fl   >*4-i W   !>> 1—* 

3Soai<iiH p---» <   CJ i-l   U   O   Hl XI MH 

,1 

a 

r 

u o a 
01 
VH 

co-o 
.  _,   '^   0) 

W tu OHO CO-H 
1 < >-/" M34H 

< zu    S — HI 
; O H        •     'O ui 

H     i«0H< 

1 H PQT3 MH   " ro C 
I Z I-I c c~>3 

j > co    ./-x 

c 
0 60 

•r-l       "O   C 
Hl 0) -H 
CH   ?   > 
01 tO   O i-l 

lg 
H O i-l UN< 
OS H   01   Cm 
td      u -H cn   • 
PH W C r» o 
X Z 01   .     -s Qoxw 

M        i-4   «1 >J 

Z H   • ei co M 
O < '"I H  ;'! 

U M 
Q M     •     •   "*J 
WJHHHS 
05 0H vO IAO 
«Ä 0H Wn'J 
CO < jo I-I r>--— 

"O   i 
oi Hl 
U   Hl 
c oi 
01 VH 
Hl  U 
oi ui 
H 

O 
CO 
•H   UI 

C 
0) o 
3-H cru 

•Hl   CJ 
C 3 
£ V4 
O 4-1 
0) Hl 
4-1 C 

<3 

■H I 
I-I X X. I-I 
tO   01   CD   o 
4-1 -r-l 14-1 • 
C   01 XI 
01 .c 
SHtl. 

•H       J3   O • 
(H UX   U 
0)    •        Hl  to 
an o 

C 
o 

•r-l 

oi to 0! - 
■a oi x. a 

3 
i er 

C -H   Hl 
H'HC'iH 
aj ax I-I 
in E u M a 
to c3 oi HI g 
43 T3  4J   CO   3 

ü  X 
Hl . Hl 
C   U -H Hl 
o -H x: HI c 
'H r-l   4-1 01 CO 
4-1   O U 
CO   ^-,«4-1 4J >, 
r-l   U   O Hl XI 

4-1 
O 

XI 

a 
Ui 
3 
X. 
OI 

«r -  4r   - - * 


